Exponential Structures for Efficient Cache-Oblivious Algorithms

نویسندگان

  • Michael A. Bender
  • Richard Cole
  • Rajeev Raman
چکیده

We present cache-oblivious data structures based upon exponential structures. These data structures perform well on a hierarchical memory but do not depend on any parameters of the hierarchy, including the block sizes and number of blocks at each level. The problems we consider are searching, partial persistence and planar point location. On a hierarchical memory where data is transferred in blocks of size B, some of the results we achieve are: – We give a linear-space data structure for dynamic searching that supports searches and updates in optimal O(logB N) worst-case I/Os, eliminating amortization from the result of Bender, Demaine, and Farach-Colton (FOCS ’00). We also consider finger searches and updates and batched searches. – We support partially-persistent operations on an ordered set, namely, we allow searches in any previous version of the set and updates to the latest version of the set (an update creates a new version of the set). All operations take an optimal O(logB(m+N)) amortized I/Os, where N is the size of the version being searched/updated, and m is the number of versions. – We solve the planar point location problem in linear space, taking optimal O(logB N) I/Os for point location queries, where N is the number of line segments specifying the partition of the plane. The pre-processing requires O((N/B) logM/B N) I/Os, where M is the size of the ‘inner’ memory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cache-Oblivious Algorithms and Data Structures

A recent direction in the design of cache-efficient and diskefficient algorithms and data structures is the notion of cache obliviousness, introduced by Frigo, Leiserson, Prokop, and Ramachandran in 1999. Cache-oblivious algorithms perform well on a multilevel memory hierarchy without knowing any parameters of the hierarchy, only knowing the existence of a hierarchy. Equivalently, a single cach...

متن کامل

Cache-Oblivious Data Structures

University of Southern Denmark 38.1 The Cache-Oblivious Model . . . . . . . . . . . . . . . . . . . . . . . . . 38-1 38.2 Fundamental Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-3 Van Emde Boas Layout • k-Merger 38.3 Dynamic B-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-8 Density Based • Exponential Tree Based 38.4 Priority ...

متن کامل

Funnel Heap - A Cache Oblivious Priority Queue

The cache oblivious model of computation is a two-level memory model with the assumption that the parameters of the model are unknown to the algorithms. A consequence of this assumption is that an algorithm efficient in the cache oblivious model is automatically efficient in a multi-level memory model. Arge et al. recently presented the first optimal cache oblivious priority queue, and demonstr...

متن کامل

An Optimal Cache-Oblivious Priority Queue and Its Application to Graph Algorithms

We develop an optimal cache-oblivious priority queue data structure, supporting insertion, deletion, and delete-min operations in O( 1 B logM/B N B ) amortized memory transfers, where M and B are the memory and block transfer sizes of any two consecutive levels of a multilevel memory hierarchy. In a cache-oblivious data structure, M and B are not used in the description of the structure. Our st...

متن کامل

Cache Efficient Simple Dynamic Programming

New cache-oblivious and cache-aware algorithms for simple dynamic programming based on Valiant’s context-free language recognition algorithm are designed, implemented, analyzed, and empirically evaluated with timing studies and cache simulations. The studies show that for large inputs the cache-oblivious and cache-aware dynamic programming algorithms are significantly faster than the standard d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002